MAC 3 Series

Digital controller Instruction Manual

Thank you for purchasing SHIMAX product. Please check that the product is the one you ordered. Please operate after you read the instruction manual and fully understand it.

「Notice」

Please ensure that this manual is given to the final user of the instrument.

Contents		
		Page
Preface		
1. Matters regarding safety -		
2. Introduction		
2-1. Check before use		
2-2. Caution for use		
3. Installation and wiring		
3-1. Installation site (environmental conditions) -		
3-2. Mounting -		
3-3. External dimension and panel cutout		
3-4. Wiring		
3-5. Terminal arrangement diagram		
4. Description of front panel		
4-1. Names of front panel		
42. Explanation of front panel section		
5. Description of screens		
5-1. How to move to another screen		
5-2. Setting Method		
5-3. Power-on and initial screen display -		
54. Explanation of each screen -		
(1)Basic screens -		
(2)FIX (constant value control) setting screens		
(3) PROG (program control) setting screens		
(4) Mode 1 screens \cdot		
(5) Mode 2 screens		
(6) Mode 3 screens \cdot		
(7) Mode 4 screens		- 10
(8) Mode 5 screens		- 11
(9) Mode 6 screens		
(10) Mode 7 screens		- 13
(11) Mode 8 screens		- 13
(12) Mode 9 screens		
5-5. Measuring range code table		
6. Supplementary Explanation of Function		
6-1. Auto return function -		$\cdot 14$
6-2. Output Soft Start Function		
6-3. Event Selection Alarm Operation Figure		
6-4. AT (Auto Tuning)		
6-5. 2 output-characteristics figure		
7. Trouble Shooting -		- 15
7-1. Cause and Treatment of Main Defects		
7-2. Cause and Treatment of Error Display -		
8. Specification		
9. Program pattern setting table		

Preface

This instruction manual is intended for those who will be involved in wiring，installation， operation and routine maintenance of the MAC3．
This manual describes the care，installation，wiring，function，and proper procedures regarding the operation of MAC 3
Keep this manual on hand while using this device．Please follow the provided guidance．

1．Matters regarding safety

For matters regarding safety，potential damage to equipment and／or facilities and additional instructions are indicated as follows：

This mark indicates hazardous conditions that could cause injury or death of personnel． Exercise extreme caution as indicated．

「AWARNING」

This mark indicates hazardous conditions that could cause damage to equipment and／or facilities．Exercise extreme caution as indicated．

「ACAUTION」

This mark indicates additional instructions and／or notes．
「NOTE」

「 \triangle WARNNG」

MAC3 is designed for controlling temperature，humidity，and other physical subjects in general industrial facilities．It must not be used in any way that may adversely affect safety，health，or working conditions．

「 \triangle CAUTION」

To avoid damage to the connected equipment，facilities or the product itself due to a fault of this instrument，safety countermeasures must be taken before usage，such as proper installation of the fuse and the overheating protection device．No warranty，expressed or implied，is valid in the case of usage without having implemented proper safety countermeasures．

「 \triangle CAUTION

－The \square mark on the plate affixed to the instrument：
On the terminal nameplate affixed to the case of your instrument，the \square mark is printed． This is to warn you of the risk of electrical shock which may result if the charger is touched while it is energized．
－The external power circuit connected to the power terminal of this instrument must have a means of turning off the power，such as a switch or breaker．Install the switch or breaker adjacent to the instrument in a position which allows it to be operated with ease，and with an indication that it is a means of turning off the power．Use a switch or breaker，which meets the requirements of IEC127．
－Fuse：
Since the instrument does not have a built－in fuse，do not forget to install a fuse in the power circuit to be connected to the power terminal．The fuse should be positioned between the switch or breaker and the instrument and should be attached to the L side of the power terminal．

Fuse Rating：250VAC 0.5 A ／medium lagged or lagged type．
Use a fuse which meets the requirements of IEC127
－Load voltage／current to be connected to the output terminal and the alarm terminal should be within the rated range．Otherwise，the temperature will rise and shorten the life of the product and／or result in problems with the product．
－Voltage／current that differs from input specification should not be connected to the input terminal．It may shorten the life of the product and／or result in problems with the product．
－Input，output of voltage pulse，and output of electric current are not insulated．Therefore，do not ground an adjusted power terminal when a ground sensor is employed．
－A signal wire＇s common mode voltage to ground（signal wires other than contact output including power supply and event）should be less than $30 \mathrm{~V} \mathrm{rms}, 42.4 \mathrm{~V}$ peak，and 60 VDC ．

\ulcorner 「 CAUTION

－All the wires for the interior distribution，except for communication and contact output（including power supply and event），should be less than 30 m in length．When the wire＇s length is 30 m or more， or in the case of outdoor wiring，the suitable measure against a lightning surge is required．
－EMC standard（IEC61326）classifies MAC3 into Class A apparatus．Electromagnetic interference may occur when MAC3 is used at a business district or in the home．Please use after taking sufficient measures．

2．Introduction
2－1．Check before us
Before using MAC3，please check the model code，the exterior appearance and accessories．Also， make sure that there are no errors，impairs and shortages．
Confirmation of model code：Check that the product you ordered is being delivered properly
Check the model code of the main body case against the following code table．

Example of model code

MAC 3A－										
1	$\frac{\mathrm{M}}{2}$	$\frac{\mathrm{C}}{3}$	$\frac{\mathrm{~F}-}{4}$	$\frac{\mathrm{E}}{5}$	$\frac{\mathrm{C}}{6}$	$\frac{\mathrm{D}}{7}$	$\frac{\mathrm{H}}{8}$	$\frac{\mathrm{~T}}{9}$	$\frac{\mathrm{R}}{10}$	$\underline{\mathrm{~N}}$
11										

Item
1．Series MAC3A－96 $\times 96 \mathrm{~mm}$ size digital controller MAC3B－48 $\times 96 \mathrm{~mm}$ size digital controller
2．Input M：multi，V：voltage，I：current
3．Control Output $1 \quad$ C：contact，S：voltage pulse，I：current（ $4 \sim 20 \mathrm{~mA}$ ），V：Voltage（ $0 \sim 10 \mathrm{~V}$ ）
4．Power Supply F－－90－264V AC，L－：21．6－26．4V DC／AC
5．Event Output N：none，E：Event Output $1 \cdot 2$（two points）
6．Control Output 2－Event Output－Optional Selection of DI N －none，C－：contact，S－voltage pulse，I－：current（ $4 \sim 20 \mathrm{~mA}$ ），V：Voltage $(0 \sim 10 \mathrm{~V}$ ） E－：Event Output 3（one point），D－：external control input（DI4）one point
7．DI N：none，D：external control input（DI 1，2，3）three points
8．CT Input $\quad \mathrm{N}:$ none， H ：CT Input two points
9．Analog Output $\quad \mathrm{N}:$ none，I：current（ $4 \sim 20 \mathrm{~mA}$ ）
10．Communication $\quad \mathrm{N}:$ none，R：RS485
11．Program Function $\mathrm{N}:$ none，P：equipped
Example of model code

| MAC 3 D | M | $\frac{\mathrm{C}}{2}$ | $\frac{\mathrm{~F}-}{4} \quad \frac{\mathrm{E}}{5}$ | $\frac{\mathrm{C}}{6}$ | $\frac{\mathrm{D}}{7}$ | $\frac{\mathrm{~T}}{8}$ | $\frac{\mathrm{~N}}{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Items
1．Series MAC $3 \mathrm{C}: 72 \times 72 \mathrm{~mm}$ size digital controller
MAC3D－： $48 \times 48 \mathrm{~mm}$ size digital controller
2．Input M：multi，V：voltage，I：current
3．Control Output $1 \quad$ C：contact，S：voltage pulse，I：current $(4 \sim 20 \mathrm{~mA})$ V：Voltage $(0 \sim 10 \mathrm{~V})$ ，
4．Power Supply F－：90－264V AC，L－：21．6－26．4V DC／AC
5．Event Output N：none，E：Event Output $1 \cdot 2$（two points）
6．Control Output 2－Event Output•Optional Selection of DI
N－：none，C－：contact，S－：voltage pulse，I－：current（ $4 \sim 20 \mathrm{~mA}$ ）V：Voltage（ $0 \sim 10 \mathrm{~V}$ ） E－：Event Output 3（one point），D－：external control input（DI4）one point
7．DI • CT Input $\quad \mathrm{N}$ ：none，D：external control input（DII $2,2,3$ ）three points，H：CT Input two points 8．Analog Output \cdot Communication $\quad \mathrm{N}:$ none，T：current（ $4 \sim 20 \mathrm{~mA}$ ），R：RS485
9．Program Function $\quad \mathrm{N}:$ none，P：equipped
Check of accessories
Instruction manual： 1 set
โNOTE」：Please contact our agencies or business offices if you have any problem． We welcome any kind of inquiry such as defect of the product，shortage of accessory and so on

2－2．Caution for use

（1）Do not operate the front panel keys with hard or sharp objects．
Do not fail to touch keys lightly with a fingertip．
（2）Wipe gently with a dry rag and avoid using solvents such as thinner

3．Installation and wiring

3－1．Installation site（environmental conditions）

「 \triangle CAUTION
 Do not use this product under the following conditions．
 Otherwise，failure，damage and fire may occur．

（1）Where flammable gas，corrosive gas，oil mist or dust generate or grow rife
（2）Where the temperature is below $-10^{\circ} \mathrm{C}$ or above $55^{\circ} \mathrm{C}$
（3）Where the humidity is over $90 \% \mathrm{RH}$ or where condensation occurs．
（4）Where high vibration or impact occurs
（5）Where inductive interference may easily affect the operation．
Or，in the region of strong electric circuit area．
（6）Where waterdrops or direct sunlight exists．
（7）Where the altitude is above $2,000 \mathrm{~m}$ ．
「NOTE \rfloor The environmental conditions comply with the IEC664． Installation category is II and the pollution degree is 2
(1) Machine the mounting hole by referring to the panel-cut illustration in Section 3-3
(2) Applicable thickness of the mounting panel is $1.2 \sim 2.8 \mathrm{~mm}$.
(3) As this product provides mounting fixture, insert the product into the panel. 3-3. External dimension and panel cutout MAC3 external dimensions (unit: mm)

MAC 3 A

MAC 3B

MAC 3B

MAC 3D

MAC3B 48×96 size

MAC3C 72×72 size

MAC3D 48×48 size

Note: Proximity attachment by a single hole is possible only in the case of horizontal direction.
When an apparatus that was attached in vertical direction is removed, a dedicated detachment tool is required.
3-4. Wiring

「 \triangle WARNING」

ODo not turn on electricity while wiring to avoid an electric shock
ODo not touch a terminal or live part while turning on electricity.
(1) Make sure that wiring operation is properly done in line with a terminal wire diagram of section 3-5.
(2) Choose a suitable compensation lead wire in the case of thermocouple input.
(3) In the case of resistance bulb input, resistance value of each lead wire must be less than
5Ω and that of three lead wires must be equal.
(4) Do not wires an input signal line inside of an electric wire pipe or a duct same with the
high voltage line.
(5) Shield wiring (single point grounding) is effective against static induction noise.
(6) Wiring twisted at equal short intervals is effective against electromagnetic induction noise

3-5. Terminal arrangement plan of MAC3A and MAC3B

「Note」 : If input type is thermocouple or volage, errors may occur when terminal 11 and terminal 12 terminal are short-circuited
Terminal arrangement plan of MAC3C

$\begin{array}{r} 2 \\ \boxed{3} \\ \operatorname{com} 4 \end{array}$			
$5_{5}^{+} \underbrace{\text { A }}$ [7	25	16	
[- ${ }_{\text {- }}^{\text {B }} 8$	26	17	
$\mathrm{INPU}_{8} \mathrm{~S}_{9} 9$	27	18	

4. . Description of front panel

4-1. Names of front panel.

MAC3A 96×96 size front
MAC3C72×72size front

4-2. Explanation of front panel section
(1) : Display of measured value (PV) (red)

Measured value (PV) and type of setting is displayed on each setting screen
(2) : Display of target value (SV) (green)

Target value and set value are displayed on each setting screen.
(3) : Monitor LED
(1) RUN monitor LED RUN (green)

If RUN is performed with RUN key, operation model screen, external control input(DI), and communication, it lights up, and put out by standby (reset). It blinks, if a manual output is chosen in output monitoring screen or external control input (DI).
(2) Program functional monitor LED PRG (green)

Lights up at the time of program control's standby or flat part control. Puts out at the time of FIX control selection.
(3) Auto tuning operation monitor LED AT (green)

If AT is chosen in ON or external control input (DI), blinks during AT execution. Lights up when AT is on standby, and puts out with AT automatic termination or release
(4) control out put 1 monitor LED OUT (green) At the time of a contact or a voltage pulse output, the it lights up with ON and lights off with OFF. Lights off with 0% power output, and lights up with 100% power. And blinks in intermediate ratio
(5) Event output monitors LED EV1 and EV2 (yellow)

Lights up when the allotted event output turns to ON.
(6) Control out put $2 /$ event output 3 monitors LED OUT2/EV3 (yellow) When control output 2 is chosen, it operates like control output 1 monitor LED does. When event output 3 is chosen, it operates like event output monitor LED does
(4) : Key-switch section
(1) (MENU)key

Press this key to move onto the next screen among the screens.
Press (MENU) key for three seconds on the basic screen, then it jumps to the lead screen of Mode 1. Press key for three seconds on the lead screen of each Mode screens, then it jumps to the basic screen.Press new key for three seconds on the lead screen of FIX or PROG then it jumps to the basic screen. When a program control option is added, press ${ }^{\text {Em(MENU}}$) key for three seconds on the screen of operation mode 2 , then it jumps to the screen of operation Mode 1.
(2) $\boldsymbol{\nabla}$ (DOWN)key

Press (DOWN) key one time, and the shown value decreases by one numerical value. One time press of $\boldsymbol{\nabla}$ key decreases by one numerical value. By pressing the key continuously, the value as well consecutively decreases. A decimal point of the smallest digit blinks at this time. This shows that a setting change is in progress.In PROG, used as a shift key between each step setting screens(Steps 1-25) lead screen.Also used as a shift key between lead screen in each mode screens.
(3) (UP) key

Press $\boldsymbol{\Delta}$ (UP) key one time, and the shown value increases by one numerical value. By pressing continuously, the value By pressing the key continuously, the value consecutively increases. A decimal point of the smallest digit blinks at this time. This shows that a setting change is in progress. In PROG, used as a shift key between each step setting screens (Steps 1-25), lead screen. Also used as a shift key between lead screen in each mode screens.
(4) (ENT (ENTRY/REGISTER)key

The setting data changed on each screen is determined (the decimal point of the minimum digit is also lighted off).
When a program control option is added, press ENT (ENT) key for three seconds on the screen of operation mode 1 , then it jumps to the screen of operation Mode 2.
Press ENy key for 3 seconds on the output monitoring screen,then the shift between manual output and automatic output is carried out.

Press the key for 3 seconds on the basic screen, then it shifts to FIX or PROG head screen. Push at FIX-PROG and each mode screens' lead screen, then shifts to setting screen
(5) RuN (RUN OPERATION/STOP)key

Push for 3 seconds at STBY (control stop), then FIX or PROG control starts.
Push for 3 seconds while FIX or PROG is in operation, then control is stopped.


```
0\leftarrow m3 seoonds

Press the En key for 3 seconds on a basic screen，then it shifts to the lead screen of \(\boldsymbol{\sim}\) Press the mem key for 3 seconds on \(\boldsymbol{\sim}\) operation mode 2 screen．The shift is possible when the program option is added and \(\boldsymbol{\Omega} \boldsymbol{\sim}\)


Every time you press the liw key on a basic screen，it shifts to each screen of the basic screens．
Press the 四 key for 3 seconds on a basic screen，then it shifts to the lead screen of mode 1 screens．
 Press the \(\boldsymbol{\nabla}\) key on the lead screen of mode 1 screens，then it further advances to mode 9 ，and mode 8．（Notes：If no corresponding option is found，the mode \(4-9\) is skipped） Press the key for 3 seconds on the lead screen of mode \(1 \sim 9\) screens，then it shifts to the basic screen．
Press the eev key on the lead screen of mode 1～9 screens，then it shifts to the first setting screen of each screens．
Press the key on the the first setting screen of each screens，then it shifts to the next screen．Every time you press the key，it shifts to the next setting screen．

\section*{5－2．Setting Method}

To change settings，display an appropriate screen and change the setting（value or function）by pressing \(\boldsymbol{\square}\) or \(\boldsymbol{\nabla}\) key
On the output monitor screen of basic screens，you can change the control output from＂Automatic＂to＂manual＂，and save its change of setting．Display the output monitor screen，and then press anm key for three seconds to shift from Automatic to Manual．Then by pressing \(\boldsymbol{\Delta}\) or \(\boldsymbol{\nabla}\) key，you can adjust to the desirable output value．In this case，no need to press anv key in order to determine the change of setting． Press mey for three seconds as well to shift back to Automatic．Excluding when a keylock is OFF，Automatic \(\Leftrightarrow\) Manual switchover does not work while STBY〈RST＞and AT are in operation． In the case of two－output type，the switchover between automatic and manual is operatable through output 1 and output 2 ．The setting is altered simultaneously．
Output monitor
5－3．Power－on and initial screen display
At power－on，the display section shows each screen of initial screens for one second，then moves on to the basic screen．
－Contact ©：Voltage pulse ©：Current ※Output 2 Displays only optional addition．
5－4．Explanation of each scre


Priority is given to DI when RUN is allotted to extemal control input．DI．Key operation cannot be performed unless allotment is canceled．

When measuring range，a unit，scaling，and output characteristics are changed it is initialized and Sセロゴ（ーラに）is displayed
Press key for 3 seconds，then it shifts to Action mode2 screen，when the program control option is added on this screen，FIX（constant value control）\(\longleftrightarrow\) PROG（program control） switchover is possible choose
Choose a program，then Monitor LED＇s PRG lights up．
Action mode1 screen Action mode2 screen


ーエにくた．three seconds
——PRG LED lights up
Press menv key for 3 seconds on Action mode2 screen，then it retums to Action mode1 screen． Action mode2 screen is not displayed without a program option． When PROG is allotted to DI，DI is given proiority．Key operation cannot be performed unless allotment is canceled

Press have key on Action mode1 screen，then it shifts to output 1 monitoring screen．
 and becomes control stop［Output OFF（ \(0 \%\) ）］conducting

Output 1 monitoring screen
ご manual output setting range：：00－100．0\％（within output limiter）
At the time of automatic output，monitor display only．
Inv key Refer to Item 5－2 about automatic \(\Leftrightarrow\) manual switchover，and setting method at the time of manual operation．
A manual output is canceled when an operation mode is made into 5iローコ（ーラに）
When a power source is intercepted and re－switched on，it returns to the condition just before intercepting．
 is not performed with key operation，and only the output value at the time of manual operation can be changed．

Output 2 monitoring screen
25
Contents are the same with that of an output 1 ．
\(\downarrow\) Outpout 2 monitoring screen displays only when output 2 option is added．

CT1 current monitoring－screen
ごS Current display range： \(0.0-55.0 \mathrm{~A}\)
－50．Displays at the time of CT input option addition，and the current value detected by CT sensor is displayed． nrov key Current value is displayed．

CT2 current monitoring screen
25
－30：Contents are the same with that of an output 1. \(\downarrow\) ．\({ }^{\text {hey }}\)

Monitoring screen of step＇s remaining time period
こロ
95：53 Displays while program is in operation if program option is added．
四 key Step No．in progress and remaining time are displayed by tums．
（In \(\infty\) setting，step №．and \(\boldsymbol{\sim}\)＇r are displayed by turs）
A remaining time and an elapsed time is switchable by pressing the em key for 3 seconds．
（Switchover is interlocked with the number of times of next screen pattem．） Decimal point of the minimum digit lights up in displaying elapsed time， This screen is not displayed without a program option．Not displayed in the state of program RST and FIX neither

Monitoring screen for the remaining repeating time of pattem
ご
9595 Being displayed while program is in operation，when the program option is added，
On－going step No．and the remaining repeating time of pattem are displayed by turs． （new key（In \(\infty\) setting，step №．and＿\({ }^{\prime}\)＇are displayed by turs） A remaining time and actually performed times are switchable by pressing the key for 3 seconds．（Switchover is interlocked with front screen step time．） The decimal point of the minimum digit lights up when actually performed times being displayed． This screen is not displayed without a program option．Not displayed in the state of Program RST and FIX neither．

PID No．monitoring screen
ご


S・ーロ（skip）is unable to perform while HOLD is in execution．
When \(\boldsymbol{H} \boldsymbol{\sim} \boldsymbol{\sigma}\) is allotted to \(D I, D I\) is given prionty．
Execution and release of HOLD with key operation is unable to perform．
This screen is not displayed without a program option．Not displayed in the state of program
－Sit and FIX neither．
SKIP（skip）execution screen
Siーロ
ロル：Setting range： \(\boldsymbol{O} \boldsymbol{\sim} \boldsymbol{\sim} \boldsymbol{F}, \boldsymbol{0}\)
SKIP（skip）is the function that makes to end the on－going step compulsorily，and is to shift to the following step．The next step starts instantly，if performed．
When SKIP is continuously performed，about 1 second interval is required from execution to the next one．
Even if SKIP is allotted to DI，execution is able to perform with DI and key operation．
nankey SKIP cannot be performed while HOLD is in operation．
This screen is not displayed without a program option．Not displayed in the state of program
－5：and FIX neither．

AT（Auto Tuning）execution screen
\begin{tabular}{|c|c|}
\hline Fit & Initial value： 0 ロ\％ \\
\hline ロF\％ & Setting range：ロッチ，ロロ \\
\hline 悶 key & \\
\hline
\end{tabular}

Not displayed at the time of \(\operatorname{STBY}(\mathrm{RST})\) ，a manual output，and \(\mathrm{P}(\) proportional band \()=\mathrm{OFF}\) ．
Except in the setting of keylock OFF，AT is unable to perform in scale over．
（At the time of DI allotment，execution of AT by DI can be performed．）
Even in such a case，halfway release is performed on this screen．
Release of AT，STBY（RST），EV operating point，setting of keylock，and mode \(5 \sim\)
9 screen are operateable with key．
Except in th setting of AT normal end，execution of AT is canceled compulsorily at the time of \(\operatorname{STBY}(\) RST \()\) selection and AT release setup．

EV1（event 1）operating－point setting screen
Eヨ：Initial value：upper limit absolute value measuring range Scaling upper limit
（2）lower limit absolute value measuring range Scaling lower limit
四 key lower limit deviation－1999
within deviation
outside deviation 2
CT1 or CT2
guarantee
Setting range：upper limit absolute value within measuring range within scaling limit
lower limit absolute value within measuring range within scaling limit
upper limit deviation -19902006 unit
lower limit deviation \(-\operatorname{OSO} \sim 20\) unit within upper－lower limit deviation \(8 \sim 2\) outside upper－lower limit deviation \(\Omega \sim\) ล CT1 or CT2 \(B \sim 50: 1\)
The operating point of the alarm type allotted to EV 1 is set up．


The operation mode of each deviation alarm is \(\boldsymbol{r} \boldsymbol{\sim}\) ．
Effective at the time of automatic output．
Each deviation alarm serves as PV＇s deviation to Execution SV．
Event operation other than each deviation alarm is always effective．

EV2（event 2）operating－point setting screen
Eロコ


EV3（event 3）operating－point setting screen
Eーシ
Initial value，setting range，contents are the same with EV1
When EV 3 option is added，event 3 is displayed as the same contents with EV 1 and 2 ，
irrespective of EV 1 and 2 ．


\[
\begin{aligned}
& \text { - Si c release EV2 } \\
& \text {-St 3 release EV3 }
\end{aligned}
\]
\[
B_{i}: \quad \text { release all } E V_{s} \text { at a time }
\]
 00
are displayed．If latching is on，once EV is outputted， EV output state is maintained even if EV is in the state of OFF ．When EV is in a latching state，decimal point of the minimum digit blinks，and it shows that release of EV is possible．If Een key is pressed， EV is released and a decimal point lights off．

However，release is impossible when a state is in EV power range．
Retum to basic screen
（2）FIX（constant value control）setting screens
At the time of no program option and with program option and \(\boldsymbol{F}\)－ mode2 screen of basic screens，lead screen of FX setting screens is displayed when em key is pressed for 3 seconds．
If ENW key is pressed for 3 seconds on lead screen，it retums to basic screen．
lead screen of FIX setting
basic screen

\section*{IX lead screen \\ ニーム \\ エモン No setting on this screen}

Ean key Press key ，then it shifts to the first setting screen SV1 setting screen．
SV1 setting screen
5：
Initial value ：At the time of sensor input 0

SV1 output1 PID No．setting screen
ia \(\quad\) In itial value ： 1
\begin{tabular}{|l} 
Setting range：1，2， 3 \\
When SV1 is Execution SV，PIDNo．that will be used for control of output 1 \\
is chosen from \(1 \sim 3\).
\end{tabular}

SV1 output2 PID No．setting screen
iocar Initial value：1
：Setting range：1，2，3
new key When SV1 is Execution SV，PIDNo．that will be used for control of output 2 is chosen from 1～3．
Displayed when output 2 option is added
SV2 setting screen


SV2 output 2 PIDNo．setting screen
ลロローロ Initial value：1
Setting range：1，2，3
nem key Displayed when SV2 is allotted to DL．
When SV2 is Execution SV，PIDNo．that will be used for control of output 2 is chosen from \(1 \sim 3\) ．

SV3 setting screen
Initial value：same with SV1
Setting range：same with SV1
Displayed when SV3 is allotted to DI．When terminal of allotted DI short－circuits，
it becomes Execution SV．
When SV3 is Execution SV，it is reflected in basic screen．
Being initilized when measuring range，unit，and scaling are changed．
Setting range：1，2，3

SV4 output 1 PIDNo．setting screen
Ho：Initial value：1
Setting range：1，2．3
Setting range： \(1,2.3\)
Display ked when SV4 is allotted to DL． When SV4 is Execution SV，PIDNo．that will be used for control of output 1 is chosen from 1～3．
SV4 output 2 PIDNo．setting screen
Hロコロー Initial value：1
：Setting range：1，2，3
（140）key Displayed when SV4 is allotted to DL．
When SV4 is Execution SV，PIDNo．that will be used for control of output 2 is chosen from \(1 \sim 3\) ．
Displayed when output 2 option is added
Retum to FIX lead screen
（3）PROG（program control）setting screens
Press ent key for 3 seconds，lead screen of the PROG setting screens is displayed，When program
option is added and \(\boldsymbol{\sim}\)
If hew is pressed for 3 seconds on lead screen，it returns to basic screen．
\[
\begin{aligned}
& \text { Basic screen } \\
& \therefore \quad \leftarrow \text { 国 three seconds } \quad O_{2}
\end{aligned}
\]

Press En Key for 1 second it will move to Program pattem 2 screen，and Press em key 1 second It will move to program pattem 1，2，4，
The number of setting in the program pattem screen can be changed 1－4 to the number of program pattem．（1＝pattem \(1,2=\) pattem \(1 \& 2,4=\) pattaem 1 to 4 ）
Only the pattem you did program pattem setting screen will be indicated．


Program basic setting screens Lead screen
Pror No setting on this screen
S．\(\quad\) Press \(\triangle\) key to shift to step 1 lead screen． Start mode setting screen
\(\boldsymbol{S}\) ニロ́ \(\quad\) Initial value： \(\boldsymbol{O B}(\mathrm{PV})\)

This setting screen can decide if the start set point of program control should be PV ，or
nean key should be the start SV which is set on the next screen．
When PV is chosen，and when PV is closer to the set point of Step1 than start wasting
SV ，time is omissible．

Start SV setting screen
Sごロ \(\quad\) Initial value ：At the type of sensor input 0

> Setting range: sensor input type within measuring rang
law key linear input type within scaling range
Moreover，within limit of SV limiter．

When SV is chosen on start mode setting screen，this screen＇s set value becomes start set point． The basic screen SV display at the time of Program RST is the value set on this screen．

Termination step setting screen
End \(\quad\) Initial value： 40
3 Setting range： \(1 \sim 40\) steps
Number of execution Setting screen for repeating of program pattem
ロェーに Initial value：1
\(\stackrel{\text { Setting range：1～9999 times，} \infty}{ } \quad\) key The number of execution of a program pattem is set．
Gurantee soak zone
\[
\begin{array}{ll}
\text { Initial value:OFF } \\
\downarrow & \text { Setting range:OFF, } 1 \sim 2000 \text { Digits(Time unit belong to the Time unit setting screen) } \\
& \text { In case deviation of step SV of level step PV remains, the step does not move to the } \\
\text { next step until PV reach to the SV. }
\end{array}
\]

Time unit setting screen


（40w key This decides if unit of the execution time set up at each step is minute： second ，hour．minute，or hour．
To program basic setting screens Lead screen
About PV start
In start mode，when PV is chosen，and when PV is closer to the set point of Step1 than start SV， wasting time is omissible．
「example」： PV at the time of \(" \mathrm{RST}\) is \(30^{\circ} \mathrm{C}\) ，Start SV is \(0^{\circ} \mathrm{C}\) ，Step \(1^{\prime}\)＇s attainment \(\mathrm{SV} 100^{\circ} \mathrm{C}\) ， Execution time of Step1 is 60 minutes Start at start SV ，attainment time is 60 minutes．
When starts at PV， \(100-30=70^{\circ} \mathrm{C}\) ，therefore 60 minutes \(\times 70 \%=42\) minutes \(=18\) minutes＇shortening
However，depending on the spatial relationship between PV，Start SV，and attainment SV，it may become SV start or Step1 may be skipped．
（1）case of SV start
PV \(\leqq\) S＿SV（start SV）＜1＿SV（step1 attainment SV）


（2）When Step 1 is skipped and progresses to Step 2
S＿SV＜1＿SV＜PV
S＿SV＞1＿SV＞PV
\(\mathrm{PV}=1 \_\)SV

PV


Step 1 setting screens～Step 40 setting screens
Screen sequence of step 1 setting screens \(\sim\) step 40 setting screens are as follows．
\[
\text { Prou } \Delta \longrightarrow \operatorname{StEP} \Delta \rightarrow \operatorname{SEEP} \cdots \square \rightarrow \operatorname{StEP}
\]


In each step setting screen，next to number，＿for Steps 1～9，\({ }^{-}\)for 10～19－for 20～29 \({ }^{-}\)，30 \(\sim 39\) and \(40=\) are assained to distinguish each of them．
 If the ew key is pressed at each step lead screen，it shifts to \(S V\) setting screen of each step．
If the key is pressed on SV setting screen，it shifts to execution time setting screen of each step． After that，if hew key key is pressed，then it shifts to output 1PIDNo．，output 2PIDNo．，and lead screen． Moreover，it is if emv key is pushed for 1 second on each setting screen，it advances to the next Step No．＇s
same setting item screen．
\[
\left(1 \_S V \rightarrow 2 \text { SV } \cdots \rightarrow 0=S V \rightarrow 1 \text { SV }\right)
\]

Step 1 is explained，since all the setting content of each step are same．
Step1 SV setting screen
Initial value ：At the time of sensor input 0
At the time of linear input scaling lower limit
Setting range ：At the time of sensor input within measuring range
At the time of linear input scaling within the limits
Within limit of SV limiter，and yet

Attainment set value of Step 1 is set
Being initialized when measuring range，unit，and scaling are changed．
Step 1 execution－time setting screen
－ミーシ Initial value：00：01
S3：59 Setting range：00：00 to \(99: 59\)（minute：second，hour ：minute）
0．1－999．9（hour）and \(\infty\)（infinity）
鹵 key Execution time of Step 1 is set．
Step1 output1 PIDNo．setting screen
＿＿In \(\quad\) Initial value： 1
i Setting range：1～3
\(\downarrow \begin{aligned} & \text { PIDNo．used in Step1＇s control output } 1 \text { is chosen } \\ & \text { 四 key }\end{aligned}\)
Step1 output 2 PIDNo．setting screen

t Setting range：1～3
（aw \(\begin{aligned} & \text { key PIDNo．used in Step1＇s control output } 2 \text { is chosen．} \\ & \downarrow \text { Displayed when output } 2 \text { option is added．}\end{aligned}\)
To step1 lead screen
Mode 1 lead scree
.anc Press key for 3 seconds on basic screen, then displayed
            ;
        Ewl key No setting on this screen. Press the key, then it shifts to the first setting screen,
                keylock setting screen.
Keylock setting screen
COロ: I- Intial valuera

        new key
        : Only change of Execution SV (basic screen) and keylock is possible.
        Z Possible to change numerical value value manualy, and key lock level
        In Only change of a keylock is possible.
        - Only change of a keylock is possible It can be locked Rum key
        Notes: Even when keylock is set as 1 and 2 , manual output value is possible to change.
SV limiter lower limit setting screen
    Sis_ I Initial value: measuring range lower limit
        S. Setting range: measuring range lower limit value \(\tilde{\sim}\) measuring range upper limit value -1
        AnW key And
        Lower limit value of target value is set
            When upper limit value is smaller than lower limit value, the value compulsorily becomes
            lower limit value +1 .
            When you choose :- pressing at lower limit value, the SV display tum off at
                basic screen. But it will tum on at the setting screen.
SV limiter upper limit value setting screen
\begin{tabular}{|c|c|}
\hline Si－H & Initial value：measuring range upper limit \\
\hline \(\therefore\) ¢ & Setting range：SV limiter lower limit value \(+1^{\sim}\) measuring range upper limit value \\
\hline 困 key & Setting upper limit value of target value is set． \\
\hline
\end{tabular}
Retum to mode 1 lead screen.
(5) Mode 2 screens
    Mode 2 lead screen
シーロー Press \(\boldsymbol{\square}\) key in mode 1 lead screen, or press . key in mode3 lead screen,
        \(\geq\) then being displayed.
        国 key If ent key is pressed, it shifts to the first setting screen PV offset correction screen.
PV offset correction (PV bias) setting screen
\(\boldsymbol{O - O} \quad\) Initial value:0
        S etting range:-500~500 Digits
If offset correction is performed, control is also performed with the corrected value
PV gain correction setting screen

        have key Maximum input value is corrected within limit of \(\pm 5.00 \%\) of measuring range.
            If corrected, inclination of spang changes in straight line which connects zero point and
                correction maximum value.
PV filter setting screen
Pロ_ \(\quad\) Initial value: 0
    Setting range: \(0 \sim 9999\) seconds
        同 key When input change is violent or noise is overlapped, used in order to ease the influences.
                In 0 second setting, filter does not function.
Mesuring range setting screen

    \(:-\) Setting range: Chosen from \(5-5\).measuring range code table.
        key
Combination of input type and measuring range is set by code
Temperature unit setting screen

            - Setting range: \(\boldsymbol{C}, \boldsymbol{\sim}\)
        Rew key The temperature unit at the time of a sensor input is set up from \(\boldsymbol{C}\left({ }^{\circ} \mathrm{C}\right), \boldsymbol{F}\left({ }^{\circ} \mathrm{F}\right)\).
        Not displayed when the linear input is chosen.

Input scaling lower limit value setting screen
Setting range：\(-1999 \sim 9989\) digits

Input scaling Decimal point position Setting screen
giP Initial value：the first place after decimal point（ 0.0 ）
\begin{tabular}{l} 
Setting range：no decimal point \(0 \sim\) the third place after decimal point（0．000） \\
\begin{tabular}{l} 
Decimal point position of input scaling is set．
\end{tabular} \\
\begin{tabular}{c} 
NOTE：The screen of input scaling serves as a monitor at the time of a sensor input． \\
Setting change cannot be performed．
\end{tabular} \\
\hline
\end{tabular}

Retum to mode 2 lead screen．
（6）Mode 3 screens

Mode 3 lead screen
Fodín No setup
3 If em key is pressed，it shifts to the first setting screen，output 1 proportional band
｜ENT key setting screen．In this screens，PID which can be used in output 1，1～3 related Items and soft start of output 1，and proportional period output characteristics are set up．

Output 1 PID1 proportional－band（ P ）setting screen
\[
\begin{aligned}
& \text { I_ : } \quad \text { Initial value:3.0\% } \\
& \text { Setting range:OFF, } 0.1 \sim 999.9 \% \\
& \text { When performing auto tuning, no necessity for a setting basically. } \\
& \text { If OFF is chosen, it becomes ON-OFF (two positions) operation. }
\end{aligned}
\]

Output 1 PID1 Integral time（I）setting screen
\begin{tabular}{ll} 
ane key & Initial value： 120 seconds \\
\end{tabular}

When performing auto tuning，no necessity for a setting basically
This screen is not displayed at the time of ON－OFF operation．
Becomes P operation or PD operation in \(\mathrm{I}=\mathrm{OFF}\) setting．

Output 1 PID1 Derivative time（D）setting screen
：＿O：Initial value： 30 second
3：－Setting range： 0 FF， \(1 \sim 3600\) seconds
｜比 key
When performing auto tuning，no necessity for a setting basically．
This screen is not displayed at the time of ON－OFF operation． Becomes P operation or PI operation in \(\mathrm{D}=\mathrm{OFF}\) setting．

Output1 PID1 manual reset setting screen
Initial value： 0.0
The offset correction at the time of \(\mathrm{I}=\mathrm{OFF}\)（ P operation，PD oper
This screen is not displayed at the time of ON－OFF operation．
Output 1 PID1 differential－gap setting screen
Initial value： 5


Output 2 PID1 maximum limiter setting screen
こロドー ：Initial value：1000
Setting range：output limiter lower limit values \(+0.1 \sim 100.0 \%\)
Output 2 PID2 proportional－band（ \(P\) ）setting screen

3：． 5 Setting range：OFF， \(0.1 \sim 999.9 \%\)
\(\downarrow\) key Contents is the same with output 1 PID1．
Output 2 PID2 integral－time（I）setting screen
コーニコ Initial value： 120 second Se Setting range：0FF， \(1 \sim 6000\) seconds new key Contents is the same with output 1 PID1．
Output 2 PID2 derivative－time（D）setting screen
\(\boldsymbol{Z \_}\)－In \(\quad\) Intial value： 30 seconds
Setting range：0FF， \(1 \sim 3600\) seconds
Output 2 PID2 dead－band setting screen
In \begin{tabular}{ll} 
Intial value：0．0 \\
& Setting range：\(-50.0 \sim 50.0 \%\)
\end{tabular}
Output 2 PID2 differential－gap setting screen
コロローコン Initial value： 5
\(5 \quad\) Setting range： \(1 \sim 999\) digits
\(\downarrow\) key Contents is the same with output 1 PID1．
Output 2 PID2 minimum limiter setting screen
Initial value： 0.0
Setting range： \(0.0 \sim 99.9 \%\)
Output 2 PID3 differential－gap setting screen
\begin{tabular}{|c|c|}
\hline こロトコ & Initial value：5 \\
\hline 5 & Setting range：1～999 digits \\
\hline new key & is the same with output 1 PID1． \\
\hline \(\downarrow\) & \\
\hline
\end{tabular}
Output 2 PID3 minimum limiter setting screen
こローコ Initial value：0．0
Setting range： \(0.0 \sim 99.9 \%\)


Retum to mode 4 lead screen．
（8）Mode 5 screens
Mode 5 screens is the setup screens of event option．Not displayed when option is not added． Mode 5 lead screen
シoロ！No setup．
5 Press ew key，it shifts to the first setting screen，event 1 operation－mode setting screen． En key

Event 1 operation－mode setting screen
\(\boldsymbol{E}\) i＿ \(\bar{\circ} \quad\) Initial value：mon
Son Setting range：Chosen from event type character table．
raw key
Event type allotted to event 1 is chosen from character table．
Event type character table
\begin{tabular}{|c|c|c|c|}
\hline Character & Type & Character & Type \\
\hline nomor & No allotment & －2コ & Control loop alarm 2 \\
\hline HP & Upper limit absolute value alarm & Sロ？ & Step signal \\
\hline 28 & Lower limit absolute value alarm & \(P \cdot E\) & Pattem termination signal \\
\hline 50 & Scale over alarm & Eno＇ & Program termination signal \\
\hline － & Maximum deviation alarm & Hoiso & Hold signal \\
\hline － & Minimum deviation alarm & Prait & Program signal \\
\hline この & Within deviation alarm & \(\cdots\) Si & Up slope signal \\
\hline －08 & Without deviation alarm & O＿Si & Down slope siganal \\
\hline －nom & RUN signal & Cum & Gurantee signal \\
\hline ニ！ & Control loop alarm 1 & & \\
\hline
\end{tabular}
※ Being initialized if measuring range，scaling，and unit are changed．
※ Deviation alarm is possible to output at the time of RUN＋AUTO．
In other events，output is always possible．
Event 1 differential－gap setting screen
\(\boldsymbol{E}\) ： \(\boldsymbol{O} \quad\) Initial value：5Digits
5 Setting range：1～999 Digits
nem key ON－OFF differential gap of event 1 is set
Not displayed，when the event 1 mode are as follows．man，50，ールーロ，5is

Change in measuring range，scaling，unit，and the event 1 mode make it initialize．
Event 1 standby operation setting screen
\(E\) ： 5 ar \(\boldsymbol{F}\) Initial value：：\(F=\)
四 key Setting range：：ロッ，： \(\boldsymbol{\sim}\) ＿I： \(\boldsymbol{\sim}\) ：No standby operation，\(:\) ：standby－operation only at the time of a power－on I－Standby－operation in the following cases．；At the time of power－on．

When each alarm＇s operating point is changed，
When deviation alarm＇s SV is performed， When RUN／STBY（RST）is switched， When AUTO／MAN is switched．


Change in measuring range，scaling，unit，and the event 1 mode make it initialize．
Event 1 latching setting screen
When latching is set as ane：once event is output，even if event is OFF state event output
state is held．Not displayed when event 1 mode is
Being initialized if measuring range，scaling，and unit are changed．

Event 2 mode setting screen
Initial value：mon

Event 2 standby operation setting screen
\begin{tabular}{|c|c|}
\hline Eこ．5 & Initial value：0\％\％ \\
\hline ロF\％ & Setting range：\％F，\(\sim, \mathcal{Z}\) \\
\hline A．key & The same as event 1. \\
\hline \(\downarrow\) & \\
\hline
\end{tabular}

Event 2 latching setting screen


SA Setting range：Chosen from event type character table．
Hewkey Type allotted to event 2 should be chosen from character table． \(\downarrow\) Change in measuring range，scaling，unit，and the event 1 mode make it initialize．
Event 3 differential－gap setting screen

Event 3 standby operation setting screen
\(\boldsymbol{E}\)＿
In
园
Event 3 latching setting screen
\begin{tabular}{|c|c|}
\hline Eコ＿ & Initial value：\％\％ \\
\hline GF\％ & Setting range：\％\％，0\％ \\
\hline 國 key & The same as event 1. \\
\hline \(\downarrow\) & \\
\hline Event 3 output & racteristics setting screen \\
\hline \(\underline{E B}\) ¢ & Initial value：mo \\
\hline 0 & Setting range：mo．mo \\
\hline
\end{tabular}
\(\downarrow\) 四 key The same as event 1 ．
Retum to mode 5 lead screen
（9）Mode 6 screens
Mode 6 screens is the setup screens of extemal control input（DI）option．
Not displayed when option is not added
DI input is a no－voltage contact or open collector
Mode 6 lead screen
Mode
Press ent key，it shifts to the first setting screen，Di1 mode setting screen．
Ean key
In MAC 3D（48x48），when option of CT OUTPUT is added， DI \(1^{\sim}\) D13 cannot be chosen and not displayed．

DI 1 mode setting screen
\(\therefore\)＿\(\overline{\text { a }} \quad\) Initial value：ran
Setting range：chosen from DI operation character table
Choose DI operation that is allotted to DI 1 from character table．
DI 2 mode setting screen
ローゴ・ラ Initial value：non
TOO Setting range：chosen from DI operation character table
namey
Choose DI operation that is allotted to DI 2 from character table．
DI 3 mode setting screen
ロシュー
Initial value：mon
non Setting range：Chosen from DI operation character table．
namk key Choose DI operation that is allotted to DI 3 from character table．

DI 4 mode setting screen
Notes：Apart from DI \(1-3\), DI 4 is displayed when being added as additional option．
－
Initial value：mon
Setting range：Chosen from DI operation character table．
Retum to mode 6 lead screen
DI operation character table and restrictions conceming DI
DI operation character table
\begin{tabular}{|c|c|c|c|}
\hline DI character & Operation type & Input detection & Contents \\
\hline mon & No allotment & & \\
\hline 5゙i & 2st SV & level & With closed DI terminal Execution SV＝1st SV \\
\hline Sロコ & 2nd SV & level & With closed DI terminal Execution SV＝2nd SV \\
\hline 5ロ3 & 3rd SV & level & With closed DI terminal Execution SV＝3rd SV \\
\hline Sロ4 & 4th SV & level & With closed DI teminal Execution SV \(=4\) th SV \\
\hline －um & control RUN & level & RUN with closed DI terminal，STBY with open one． \\
\hline Praí & program & level & Program with closed DI terminal． Constant value with opened． \\
\hline ミRッ， & manual input & level & Manual with closed DI terminal，auto with open one． \\
\hline Rit & auto tuning & edge & AT－start with rise edge． \\
\hline Hoid & hold & level & Program＇s time stops temporarily． \\
\hline Sーム， & skip & edge & Shift to the next program＇s step． \\
\hline \(P!\)－ & Pattem 1 & level & Choose pattem 1 with close DI reminal \\
\hline \(P!2\) & Pattem 2 & level & Choose pattem 2 with close DI reminal \\
\hline \(P!3\) & Pattem 3 & level & Choose pattem 3 with close DI reminal \\
\hline \(P!4\) & Patter 4 & level & Choose pattem 4 with close DI reminal \\
\hline i＿n 5 & latching release & edge & All latching are released by rise edg． \\
\hline 200： & super key lock & level & Super keylock with closed DI terminal． Release with opened． \\
\hline
\end{tabular}
＊When కロコ～エロ゙ー！are conducted during AT execution，they are performed at the time of AT
termination．

＊P：can be performed at the time of a RUN－automatic output．
＊When Pit is allotted to，release in the middle of AT operation is carried out by off－key operation chosen in AT screen．
＊While AT is performed，if STBY（RST）or a manual output is performed，AT is released．
＊Even when a keylock is not OFF，conducting of DI is effective．
＊The same operation other than morr is impossible to allot to DI1－DI4 at a time．
＊Operation allotted to DI takes prionty over DI．Key operation cannot be performed．
＊Execution of DI operation is possible to perform．But neither release of AT nor numerical change of SV and manual output is possible to perform．＊In DI input，5VDC 0.5 mA per point is impressed．Use endurable switch，transistor and so on．－Wiring distance of DI should be less than 30 m
（10）Mode 7 screens
The Mode 7 screens is the setup screens of analog output option．
Not displayed when option is not added．
In MAC 3D（ \(48 \times 48\) ），when communication option isadded，it is impossible to choose and display

\section*{Mode 7 lead screen}

二ád
When em key is pressed，it shifts to the first setting screen，analog output mode
\(\downarrow\) 包 key setting screen．
Analog output mode setting screen
Fon In Initial value：morn（does not output）
Non Setting range：\(P=P\)
newky S．execution SV
OM：control out put 1
ローロ こ control out put 2
に：CTOUTPUT 1
に！こ СT OUTPUT2

Data type allotted to analog output are chosen．
Analog output scaling lower limit value setting screen

Analog output scaling upper limit value setting screen
Initial value：the following table
Setting range．the following table

Lower limit value takes prionty，therefore upper limit value cannot be set below the value of lower limit value +1 ．When a lower limit value is set more than upper limit value，upper limit value is push to the level of lower limit value +1 ．


Retum to mode 7 lead screen

Note：An analog output limiter can be made into reverse scaling．
Example：Output range \(: 0^{\circ} \mathrm{C}(4 \mathrm{~mA}) \sim 1200^{\circ} \mathrm{C}(20 \mathrm{~mA})\) can be \(0^{\circ} \mathrm{C}(20 \mathrm{~mA}) \sim 1200^{\circ} \mathrm{C}(4 \mathrm{~mA})\) ． Set AL＿L as \(100 \%\) and AL＿H as \(0.0 \%\) ．
（11）Mode 8 screens
Mode 8 screens is the setup screens of CT OUTPUT option．
Not displayed when option is not added．
In MAC 3D（ \(48 \times 48\) ），when DI \(1 \sim 3\) are addedit is impossible to choose and display．
Mode 8 lead screen
シosic
G Press ew key，it shifts to the first setting screen，CT1 mode setting screen．
\({ }^{\text {ENW }}\)
－
Non Setting range：monoui i，outz．

Object detected by CT（current）sensor is chosen．
In the case of a current output，out is not displayed．
Oルこ is not displayed without current output or output 2 option．
EB：
CT1 delay time setting screen
\(\overline{\boldsymbol{i}} \boldsymbol{\overline { 7 }} \quad\) Initial value： 0.5
\(\begin{array}{ll}\text { Setting range：} 0.5 \sim 30.0 \text { seconds } \\ \downarrow & \begin{array}{l}\text { When control loop abnormal alarm is allotted to event，delay time from switchover of } \\ \text { operation（ON－OFF）to detection start is set up．}\end{array}\end{array}\)
CT2 mode setting screen


CT2 delay time setting screen
－I＿\(\overline{\text {－}} \quad\) Initial value： 0.5


Return to mode 8 lead screen
About control loop abnormal alarm
When the targeted output of a control loop abnormal alarm is ON，if current detected by CT is lower than the allotted event＇s operating point（Setting Value of a basic screens，event operating point setting screen）
alarm output is issued as breaking alarm．
When the targeted output is OFF，if detected current is higher than the allotted event＇s operating point （short－circuit，earth fault，etc．）
（12）Mode 9screens
Mode 9screens is the setup screens of communication（RS－485）option．
Not displayed when it isnot added．See the attached Communication Instruction Manual（in the
appendix ：＂at the time of communication option added＂）about communication，
\(5-5\) ．measuring rangecode table
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Input Type}} & \multirow{2}{*}{Code} & \multicolumn{2}{|c|}{Measureing Range} \\
\hline & & & & Unit Code \(\boldsymbol{\sim}\)（ \({ }^{\circ} \mathrm{C}\) ） & Unit Code \(\boldsymbol{F}\)（ \({ }^{\circ} \mathrm{F}\) ） \\
\hline \multirow{36}{*}{M} & \multirow{15}{*}{Thermo Couple} & R & ，； & \(0 \sim 1700\) & \(0 \sim 3100\) \\
\hline & & K & －； & \(-199.9 \sim 400.0\) & \(-300 \sim 700\) \\
\hline & & K & \(\cdots\) & \(0 \sim 1200\) & \(0 \sim 2200\) \\
\hline & & K &  & \(0.0 \sim 300.0\) & \(0 \sim 600\) \\
\hline & & K & －1－1 & \(0.0 \sim 800.0\) & \(0 \sim 1500\) \\
\hline & & J & －： & \(0 \sim 600\) & \(0 \sim 1100\) \\
\hline & & J & i2 & \(0.0 \sim 600.0\) & \(0 \sim 1100\) \\
\hline & & T & ！； & \(-199.9 \sim 200.0\) & \(-300 \sim 400\) \\
\hline & & E & \(E\) ； & \(0 \sim 700\) & \(0 \sim 1300\) \\
\hline & & S & \(5:\) & \(0 \sim 1700\) & \(0 \sim 3100\) \\
\hline & & ＊5U & ：\(:\) & \(-199.9 \sim 200.0\) & \(-300 \sim 400\) \\
\hline & & N & －： & \(0 \sim 1300\) & \(0 \sim 2300\) \\
\hline & & ＊1B & B： & \(0 \sim 1800\) & \(0 \sim 3300\) \\
\hline & & ＊3Wre5－26 & S－25 & \(0 \sim 2300\) & \(0 \sim 4200\) \\
\hline & & ＊4PLII & \(\cdots\) & \(0 \sim 1300\) & \(0 \sim 2300\) \\
\hline & \multicolumn{2}{|l|}{\multirow{16}{*}{\(\begin{array}{cc}* 6 \\ & * 6 \\ \text { Resistance Bulb } \\ & \\ & \text { Pt100 }\end{array}\)}} & \(\rho ;\) & \(-200 \sim 600\) & \(-300 \sim 1100\) \\
\hline & & & \(\cdots\) & \(-100.0 \sim 200.0\) & \(-150.0 \sim 400.0\) \\
\hline & & & \(\bigcirc\) & \(0.0 \sim 100.0\) & \(0.0 \sim 200.0\) \\
\hline & & & P－ & \(-50.0 \sim 50.0\) & \(-60.0 \sim 120.0\) \\
\hline & & & \(\bigcirc\) & \(-100.0 \sim 300.0\) & \(-150.0 \sim 600.0\) \\
\hline & & & 9 & \(-199.9 \sim 300.0\) & \(-300 \sim 600\) \\
\hline & & & \(\cdots 7\) & \(-199.9 \sim 600.0\) & \(-300 \sim 1100\) \\
\hline & & & \(P\) & \(0 \sim 230\) & \(0 \sim 450\) \\
\hline & & & － & \(-200 \sim 500\) & \(-300 \sim 900\) \\
\hline & & & ב－2 & \(-100.0 \sim 200.0\) & \(-150.0 \sim 400.0\) \\
\hline & & & － & \(0.0 \sim 100.0\) & \(0.0 \sim 200.0\) \\
\hline & & & － & \(-50.0 \sim 50.0\) & \(-60.0 \sim 120.0\) \\
\hline & & & － & \(-100.0 \sim 300.0\) & \(-150.0 \sim 600.0\) \\
\hline & & & － & \(-199.9 \sim 300.0\) & \(-300 \sim 600\) \\
\hline & & & ＿Pr & \(-199.9 \sim 500.0\) & \(-300 \sim 900\) \\
\hline & & & －PB & \(0 \sim 230\) & \(0 \sim 450\) \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{5}{*}{\[
\begin{aligned}
\text { Volatage }(\mathrm{mV}) * 70 & \sim 10 \\
0 & \sim 100 \\
* 7-10 & \sim 10 \\
0 & \sim 20 \\
0 & \sim 50
\end{aligned}
\]}} & －： & \multicolumn{2}{|l|}{\multirow{13}{*}{\begin{tabular}{l}
Scaling Range ：－1999～9999 Digit \\
Span ：10～10000Digit \\
Change of decimal point＇s position is possible （no decimal pont，0．1，0．01，0．001）
\end{tabular}}} \\
\hline & & & \(\cdots\) & & \\
\hline & & & \(\therefore 3\) & & \\
\hline & & & \(\therefore\) & & \\
\hline & & & \(\therefore 5\) & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{6}{*}{Voltage（V）}} & \multirow[t]{6}{*}{\[
\begin{array}{cc}
\hline 1 \sim & 5 \\
0 \sim & 5 \\
-1 \sim & 1 \\
0 \sim & 1 \\
0 \sim & 2 \\
0 \sim & 10
\end{array}
\]} & － & & \\
\hline & & & 82 & & \\
\hline & & & \(\mathfrak{B}\) & & \\
\hline & & & －i＇ & & \\
\hline & & & \(\mathfrak{B C}\) & & \\
\hline & & & \(\square 5\) & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Current（mA）}} & \(4 \sim 20\) & 二as ： & & \\
\hline & & \(0 \sim 20\) & ニAB & & \\
\hline
\end{tabular}
thermo couple B，R，S，K，E，，，T，T，N：JIS／IE
resistance bulb Pt100：JIS／IEC
JPt100：former JIS
＊1 thermo couple Accuracy is not guaranteed below B： \(400^{\circ} \mathrm{C}\left(752^{\circ} \mathrm{F}\right)\) ．
＊2 thermo couple In K，T，U，accuracy is \(\pm 0.5 \%\) FS for \(0 \sim-100^{\circ} \mathrm{C} \quad\left(-148^{\circ} \mathrm{F}\right)\) and \(\pm 1.0 \%\) FS if it is below \(-100^{\circ} \mathrm{C}\)
＊3 thermo couple Wre 5－26：Product of Hoskins Mfg．co．，
＊4 thermo couple PLII：Platinel
＊5 thermo couple U：DIN43710
\(* 6\) resistance bulb accuracy of \(\mathrm{Pt} / \mathrm{JPt} \pm 50.0^{\circ} \mathrm{C}, 0.0 \sim 100.0^{\circ} \mathrm{C}\) is \(\pm 0.3 \% \mathrm{FS}\) ．
＊7 voltage \((\mathrm{mV}) \quad 0 \sim 10 \mathrm{mV}\) ，accuracy of \(0 \sim 10 \mathrm{mV}\) is \(\pm 0.3 \%\) of input range．
＊Setup of factory shipment is Multi input thermo couple ：－2 \(0-1200^{\circ} \mathrm{C}\) Voltage input ：1－5V \(\overline{\boldsymbol{F}}: \quad 00-100.0\) Current input \(: 4-20 \mathrm{~mA} \approx \boldsymbol{\triangle B}: 0.0-100.0\)
6．Supplementary Explanation of Function
6－1．Auto retum function
When there is no key operation 3 minutes or more，on the screen except for basic screen and each monitoring screen，screen automatically shifts to basic screen．（Auto retur）．

\section*{6－2．Output Soft Start Function}

This is the function to increase the control output gradually with set－up time at the time of power－on，
STBY \(\rightarrow\) RUN，and normal retum from scale over．This is effective for controlling the excessive current to loads，such as a heater．

1）Soft－start functions in the following conditions．
－At the time of the power－on in automatic operation，\(S T B Y(R S T) \rightarrow R U N\) ，and normal retum from scale over．
－Setup of proportional band \((\mathrm{P})\) is other than OFF
－Soft starting time is not OFF

\section*{6－3．Event Selection Alarm Operation Figure}

The figure of alarm operation figure allotted to event \(1 \sim 3\) is shown．
i＿：Lower limit absolute value alam \(\quad\) ：－：Upper limit absolute value alarm

\(\boldsymbol{H} \boldsymbol{H} \boldsymbol{\sim}:\) Upper limit deviation alarm
＿ \(\boldsymbol{\sim}\) ：Lower limit deviation alarm


ロー․ Without deviation alarm
－ \(\boldsymbol{E}\) ：Within deviation alarm


So：Scale over


6－4．AT（Auto Tuning）
－If AT is performed by FIX（constant value control），AT monitor LED blinks and light is put out by termination or intermediate release．
－When auto tuning is ended in inclination step or chosen all PID（s），it is in standby state until one pattem is completed．then lights up，then puts out when one pattem is completed．
－When AT is not completed within 1 pattem，AT conducting is released when one pattem is completed．
－Even in inclination step，AT is performed if it is in HOLD state．
－AT at the time of 2 output specification is as follows．
At the time of heating／cooling operation and cooling／heating operation＝OUT1，OUT2 common－PID value
At the time of heating／heating operation and cooling／cooling operation，only OUT1 performs AT．
OUT 2 output while performing AT is \(0 \%\) or output limiter lower limit value．

6－5．2 output－characteristics figure
2－output－characteristics is shown in the following figure．
© Conditions：P operation，manual reset（ \(\overline{\boldsymbol{\circ}, \boldsymbol{\sim}}\) ）\(-50.0 \%\)
1）OUT 1 RA（heating）•OUT 2 DA（cooling）operation


2）OUT 1RA（heating）．OUT 2 RA（heating）


6-6 PID control methid(Flex PID Method add from Ver 1. 2)
MAC3 equipped with flex PID which can be suited SV (target value) change followingness as a disturbance in addition to the usual type SHIMAX PID which can be suited for a few target of a disturbance element (factory sewtting)
This is explainaton a modification method of two tyoes PID method both SHIMAX PID methid and Flex PID method.
(1)Setting of PID method

naw 3seconds \(\uparrow \downarrow\) EN 3seconds
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
: SHIMAX PID \\
Z: Flex PID
\end{tabular} \\
\hline
\end{tabular}

Press key 3 seconds at each setting lead screen from Mode 1 to Mode 9 , it move to the screen that can be shoosen both SHIMAX PID or Flex PID.

\section*{(2) About the factor used for Flex PID.(Add from ver 1. 2*)}

There are a factor \(:\) for SV change followingness and a disturbance response factor \(\boldsymbol{B}\) and in addition to the SHIMAX PID method, P (proportional band), I (integration time) and D (derivative time) in flex PID, and it's possible to set from 1 to 3 at PID setting screen of output 1 and 2 .

At PID setting screen it can be moved to \(\boldsymbol{\mathcal { F }}\) setting screen by pressing em key for 3seconds.
Move to \(\boldsymbol{L}\) setting screen by pressing key, move to \(\boldsymbol{I}\) setting screen by pressing key, move to \(\boldsymbol{F}\) setting screen by pressing key, move to PID setting screen by pressing key 3 seconds at \(\boldsymbol{\sim} \boldsymbol{\mathcal { A }}\) setting screen.

(3) Adjustment of each Factor

Auto tuning function calculates standard PID for the turbulence response but best value is not necessarily obtained for all applications.
When the auto tuning function finished, it should be confirmed whether the auto tuning result is excellent by giving turbulence by intention while checking the control result.
The integration limitation coefficient is trimmed as an adjustment of the overshoot and undershoots. When
is enlarged, it becomes easy for the overshoot and undershoot to go out though the restoration speed quickens.
- setting range \(=0.00 \sim 1.00\) Default Value(Value of Output1 0.4 as same Output \(1 \& 2\) ) (0.8 As Reverse-characteristic Output \(1 \& 2\) )

Adjustment of follow for Start up and SV change
The turbulence response and the SV change follow can be individually set by Flexible PID method in MAC3.It already set up the turbulence response, and now set it according to the purpose based on the table below.
\begin{tabular}{|l|l|l|l|}
\hline \(\boldsymbol{A}\) & \(\mathbf{B}\) & \multicolumn{1}{|c|}{ Control method } & \multicolumn{1}{c|}{ Features } \\
\hline 1 & 1 & \begin{tabular}{l} 
I-PD(Measurements proportion differentiation early \\
type)
\end{tabular} & For fixation control \\
\hline 1 & 0 & ID-P(Measurements proportionally early type) & \begin{tabular}{l} 
The kickback by the SV value change is ir \\
target value \\
follow are a little inferior. For ramp control
\end{tabular} \\
\hline 0 & 1 & IP-D(Measurements differentiation early type) & For target value follow valuing and cascade rt \\
\hline 0 & 0 & PID(Deflection PID) & Turbulence response and target value follow \\
\hline \(\boldsymbol{B}\) & 0 & P-I-PD(P2 flexi type) & \\
\hline
\end{tabular}

AB setting range \(=0.00 \sim 1.00\) Default value(FIX: \(\boldsymbol{\beta}=0.40 \boldsymbol{ః}=1.00\) )
(PRG: \(\boldsymbol{B}=0.20 \boldsymbol{\imath}=0.20\) )
F. should be reduced when you want to improve the step response at the SV change and the start-up, \(\boldsymbol{A}\) should be expanded when you wants to reduce the overshoot at the step responds and to reduce the output change.
\(\therefore\) should be reduced when you want to improve the follow performance at the lamp control, \(\therefore\) should be expanded When you wants to reduce the overshoot at the lamp ends and to reduce the output change

7-1. Cause and Treatment of Main Defects
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Contents of defects } & Cause & Treatment \\
\hline Eror message display & \begin{tabular}{l} 
Refer to cause and treatment of \\
error \\
display
\end{tabular} & \begin{tabular}{l} 
Refer to cause and treatment of error \\
display
\end{tabular} \\
\hline PV display is not normal & \begin{tabular}{l} 
Mismatch of instrument and input. \\
Fault in the wining.
\end{tabular} & \begin{tabular}{l} 
Type code, check of specification. \\
Check of wining.
\end{tabular} \\
\hline \begin{tabular}{l} 
Display disappeared and \\
does not operate
\end{tabular} & \begin{tabular}{l} 
Power is not supplied. \\
Abnormality of instrument.
\end{tabular} & \begin{tabular}{l} 
Check of a power supply (voltage of \\
terminal, switch, fuse, wining.
\end{tabular} \\
\hline Key operation impossible & \begin{tabular}{l} 
Keylocked. \\
Abnormality of instrument.
\end{tabular} & \begin{tabular}{l} 
Release of keylock. \\
Check of instrument, repair, exchange.
\end{tabular} \\
\hline
\end{tabular}
(1) Abnormality Display of Measurement Input
\begin{tabular}{|c|c|c|c|c|}
\hline Error display & Contents & \multicolumn{2}{|l|}{Cause} & Treatment \\
\hline \begin{tabular}{l}
--i-i-i-i \\
( HHHH )
\end{tabular} & Scale over in upper limit & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. wire breaking of thermocouple input \\
2.wire breaking of resistance bulb input A \\
3.when input exceeds upper limit of measuring range by \(10 \%\)
\end{tabular}} & \begin{tabular}{l}
1. wire breaking check of thermocouple input wiring, replacement of thermocouple \\
2.check of resistance bulbA wiring, replacement of resistance bulb \\
3.check of input voltage value and current value, input transmitter and specification (matching of incoming signal and meter specification)
\end{tabular} \\
\hline \begin{tabular}{l}
ㄴ: - \\
(LLLL)
\end{tabular} & \multirow[t]{2}{*}{Scale over in lower limit} & \multicolumn{2}{|l|}{1.when input exceeds lower limit of measuring range by \(10 \%\) 2.wire breaking of resistance bulb input \(\mathrm{B}^{*}\)} & \begin{tabular}{l}
1.polarity of input is everse, check of wiring and an input transmitter \\
2.check of resistance bulb B wiring, replacement of resistance bulb
\end{tabular} \\
\hline & & \multicolumn{3}{|l|}{*B: Wiring of MAC3A, 3B's terminal No.11, Wiring of MAC 3D's terminal No. 5} \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
b--- \\
(B---)
\end{gathered}
\]} & \multirow[t]{3}{*}{Breaking of resistance bulb input} & 1.wire breaking of \(b *\) & \multicolumn{2}{|l|}{1.check of resistance bulb wiring} \\
\hline & & \multicolumn{3}{|l|}{*b: Wiring of MAC 3A, 3B's terminal No.12,wiring of MAC 3D's terminal No. 6} \\
\hline & & 2.multiple wire breaking combinations in Abb ( \(A\) and \(B, A\) and \(b, B\) and \(b\), all of ABB) & \multicolumn{2}{|l|}{2.replacement of resistance bulb} \\
\hline \[
\begin{aligned}
& \text { E_i-H: } \\
& (\text { CJHH })
\end{aligned}
\] & Cold junction (CJ) temperature of thermocouple input is scale over in upper limit side & When ambient temperature of a meter exceeds \(80^{\circ} \mathrm{C}\) & \multicolumn{2}{|l|}{\begin{tabular}{l}
1.make Ambient temperature of meter within use environment condition temperature \\
2. Check the meter when ambient temperature is not over \(80^{\circ} \mathrm{C}\)
\end{tabular}} \\
\hline \begin{tabular}{l}
- iti \\
(CJLL)
\end{tabular} & Cold junction (CJ) temperature of thermocouple input is scale over in lower limit side & When ambient temperature of meter becomes less than \(-20^{\circ} \mathrm{C}\) & \multicolumn{2}{|l|}{\begin{tabular}{l}
1.make Ambient temperature of meter within use environment condition temperature \\
2. Check the meter when ambient temperature is not less than \(-20^{\circ} \mathrm{C}\)
\end{tabular}} \\
\hline
\end{tabular}

\section*{8. Specification}

Display
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{8}{*}{Display method} & \multirow[t]{8}{*}{Digital display:} & MAC3A (96 \(\times 96\) size) & PV red 7 segment LED & 4 figure (height of character about 20 mm ) \\
\hline & & & SV green 7 segment LED & 4 figure (character quantity about 13 mm ) \\
\hline & & MAC3B(48x96 size) & PV red 7 segment LED & 4 figure (height of character about 12 mm ) \\
\hline & & & SV green 7 segment LED & 4 figures (height of character about 9 mm ) \\
\hline & & MAC3C(72 \(\times 72\) size) & PV red 7 segment LED & 4 figure (height of character about 16 mm ) \\
\hline & & & SV green 7 segment LED & 4 figures (height of character about 16 mm ) \\
\hline & & MAC3D (48x48 size) & PV red 7 segment LED & 4 figure (height of character about 12mm) \\
\hline & & & SV green 7 segment LED & 4 figures (height of character about 9 mm ) \\
\hline
\end{tabular}

Display accuracy \(: \pm(0.25 \% \mathrm{FS}+1\) digit \() \mathrm{CJ}\) errors not included, B thermo couple below \(400^{\circ} \mathrm{C}\) is not guaranteed.
Display accuracy during EMC examination is \(\pm 5 \%\) FS.
Accuracy maintenance range
Display range
Display resolution Input scaling

Setting
Setting system
SVSetting range Setting lock

SV setting limite
Unit setting
\(23 \pm 5^{\circ} \mathrm{C}\)
: \(-10 \%-110 \%\) of measuring range, but Pt100's \(-200^{\sim} 600^{\circ} \mathrm{C}\) is \(-240 \sim 680^{\circ} \mathrm{C}\)
: Changes with measuring range and scaling.
: Possible at the time of voltage input and current input -1999-9999 (spang 10-10000 count, decimal point position no decimal point \(0.1,0.01,0.001\) )

: Same with measuring range
: Communication and key seting (three levels), DI (one level)
\begin{tabular}{|l|l|l|}
\hline Operations & Level & Lock Content \\
\hline \multirow{4}{*}{\begin{tabular}{c} 
Communication \\
\& \\
Key setting
\end{tabular}} & OFF & No lock \\
\cline { 2 - 4 } & 1 & Execution SV and a manual numerical change are possible. And change of a keylock level is possible. \\
\cline { 2 - 4 } & 2 & Possible to change numerical value manually and keylock level. \\
\cline { 2 - 4 } & 3 & Possible to change keylock level. \\
\cline { 2 - 4 } & 4 & Only change of a keylock is possible It can be locked mum key \\
\hline \multirow{3}{*}{ DI Setting } & \multicolumn{2}{|l|}{ Super Key Lock (Shift between screens prohibited. Fixed only to the basic screen.) } \\
\hline
\end{tabular}
* Regardless of the setting lock by communication \& key setting, the RuW key is always effective.

However, even Rü key is not received when super keylock by DI is performed.

Input
: Same with measuring range ( lower limit < upper limit)

Multi input
Thermocouple \(: 500 \Omega\) or more, external resistance tolerance level \(100 \Omega\) or less input resistance
Influence of lead-wire \(\quad: 1.2 \mu \mathrm{~V} / 10 \Omega\)
Burnout :Standard equipment (Up Scale only)
Measuring range
Item 5-5. Refer to measuring range code table.
Compensation accuracy
of reference junction \(: \pm 1^{\circ} \mathrm{C}\) (ambient temperature \(18-28^{\circ} \mathrm{C}\) ) At the time of vertical plural proximity attachment \(\pm 2^{\circ} \mathrm{C}\)
\(\pm 2^{\circ} \mathrm{C}\) (ambient temperature \(0-50^{\circ} \mathrm{C}\) ) At the time of vertical plural proximity attachment \(\pm 3^{\circ} \mathrm{C}\)
```

Tracking of a reference
junction : Below the ambient temperature of 0.5 '}\textrm{C}/\textrm{min}\mathrm{ , compensation accuracy of reference junction }\pm\mp@subsup{1}{}{\circ}\textrm{C
Resistance bulb stipulated
current resistance bulb :Approx. 0.25mA
Lead wire resistance
tolerance level
:5\Omega or less per wire (Resistance of three lines should be equal)
Influence of lead-wire
resistance }:5\Omega\mathrm{ or less per wire 0.2%FS
10\Omega or less per wire 0.5%FS
20\Omega or less per wire 1.0%FS
Measuring range :Item 5-5. Refer to measuring range code table
Voltage (mV) Input resistor :500k\Omega or more
Input voltage range :Item 5-5. Refer to measuring range code table
Voltage input (V) Input resistor: 500k }\Omega\mathrm{ or more
Input voltage range :Item 5-5. Refer to measuring range code table.
Current input (mA) reception
Resistance :250\Omega (built-in)
Input range :Item 5-5. Refer to measuring range code table.

Sampling period	$: 0.25$ second
PV filter	$: 0-9999$ second
PV offset compensation	$: \pm 500$ unit

 PV gain correction : }\pm5.00%\textrm{PV}\mathrm{ filter
 Control
Control system :PID control with an auto tuning function or ON-OFF operation
Proportional band (P) :OFF and 0.1-999.9% of measuring range (ON-OFF operation by OFF setting)
ON-OFF Differential-gap (DF)
Integration Time (I)
Manual Reset (MR)
*000 seconds (PD operation by OFF setting)
Manual Reset (MR) : }\pm50.0%\mathrm{ (effective when set as I = OFF)
Output 2 dead band : -1999-5000 unit
Output limiter (OL, OH) :0.0-100.0% (OL<OH) (set resolution 0.1)
Soft start
:OFF, 0.5-120.0 seconds (set resolution 0.5)
Proportional period
Control output characteristic :Output 1, output 2. Possible to choose either RA (heating) or DA (cooling)
Manual output :0.0-100.0% (set resolution 0.1)
* Each parameter,(P, I, D, DF, MR, OL, and OH) of Outputs 1 and Outputs 2, Flex PID belongs to 1~3 categories

```
Control output 1
    Contact :normal open (1a) 240V AC 2A (resistance load)
    Voltage pulse (SSR drive) \(\quad: 12 \mathrm{~V} D C+1.0--1.5 \mathrm{~V}\) MAX 20 mA
    Current \(\quad: 4-20 \mathrm{mADC}\) load resistance \(500 \Omega\) or less Display accuracyaccuracy \(\pm 1 \%\) (accuracy maintenance range \(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\) )
    Load regulation \(\pm 0.2 \%\), resolution approx. \(1 / 12000\)
Control out put 2 (option)
    : Control out put 2 is exclusive option of event 3 and DI4.
Contact
Voltage pulse (SSR drive)
    normal open (1a) 240V AC 2A (resistance load)
    12 V DC+1.0--1.5V MAX20mA
Current \(: 4-20 \mathrm{mADC}\) load resistance \(500 \Omega\) or less , display accuracy \(\pm 1 \%\) (accuracy maintenance range \(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\) )
    Load regulation \(\quad \pm 0.2 \%\), resolution approx. \(1 / 200\)
Program function (option)(40step fuinction add from Ver 1.3*)
    Number of steps : Maximum 40steps When choose pattenn 1,20steps of each steps when choose pattern 2,10steps of each steps when choose pattern 4.
    Choosen from pattern 1,2,4 Add from Ver 1.3*
    PID selection
    Each output has three kinds. PID1, PID2, and PID3
    Time setting
    Time setup resolution
    Time accuracy
    : 0 minute 0 second \(\sim 99\) minutes 59 seconds or 0 hour 0 minute \(\sim 99\) hours 59 minutes or \(0.0-999.9\) hours ,and \(\infty\) (infinity)
    \(\pm\) (Setup time \(\times 0.005+0.25\) second)
    In a step Setting parameter
    : SV, time, PIDNo.
    Number of repeats
    Time signal
    PV start function
    Guarantee soak function
    Possible to allot to Event ( 1 second for changeover, 3 seconds for patter end, 3 seconds for program end)
    :With
    :With Off or 1-2000unit(add from Ver 1. 2*)
    Time hold facility :Possible at front key, DI allotment, or communicatio
    Step skip :Possible at front key, DI allotment, or communication
    Power failure compensation : without (setting contents being held.However, elapsed time, execution step, and number of execution are reset.)

Output rating
Kind of event Kind of event
：Contact Normal open（1a）240V AC 2A（resistance load）EV1•EV2 and common ：Refer to following table．
\begin{tabular}{|c|c|c|}
\hline Function & Character & Note \\
\hline No allotment & nom & \\
\hline Upper limit absolute value Alarm & HiP & \\
\hline Lower limit absolute value alarm & \(\therefore 8\) & \\
\hline Scale over alarm & 50 & HHHH，LLLL，B－－－－Operates，when displayed． \\
\hline Upper limit deviation value Alarm & Ho＇ & \\
\hline Lower limit deviation value alarm & ：\({ }^{\text {d }}\) & \\
\hline Within deviation alarm & － & \\
\hline Without deviation alarm & \(00^{\circ}\) & \\
\hline RUN signal & －nor & Operates during PROG and FIX in operation． \\
\hline \begin{tabular}{l}
Control loop alarm \\
（Heater breaking／loop）
\end{tabular} & 二を & When contact／voltage pulse output is ON Breaking alarm，when it is below EV set． When contact／voltage pulse output is OFF Loop alarm，when it is more than EV set． \\
\hline Step signal & 5！？ & Operate for 1 second at the time of step switchover \\
\hline Pattern end signal & \(P\) P & Operate for 3 seconds at the time of pattern end \\
\hline Program end signal & Enc & For 3 seconds at the time of program end \\
\hline Hold signal & カロis & Operates during time hold． \\
\hline Program signal & Proíl & Operates by program selection \\
\hline Upslope signal & －Si & Operates when the inclination of program control rises（including Hold status） \\
\hline Downslope signal & －Si & Operates when the inclination of program control descends（including Hold status） \\
\hline Guarantee signal & ELA & Operates when approaches the targeted value exceeding the EV value． \\
\hline
\end{tabular}

Setting range

Standby operation

Latching

Differential gap
Output characteristic

Event3（Option）

DI 1－2－3（option）
Input rating Allotment function

Upper limit absolute value alarm，Lower limit absolute value alarm within measuring range Upper limit deviation alarm，Lower limit deviation alarm－1999－2000 unit Within deviation alarm，without deviation alarm 0－2000unit Control loop alarm ．0－50．0A
：OFF No standby operation
1 Only at the Time of Power－on，standby operation
2 At the Time of power switch on，each alarm operating point is changed，deviation alarm＇s execution SV is changed， and RUN／STBY（RST）is switched over standby operation，at the time of AUTO／MAN switchover
Alarm operation maintenance function（Release is done by key operation，DI，or power OFF
In the case of release by DI and power OFF，all alarms are called off simultaneously）
1－999 unit
Choose from normal open（NO）or normal closing（NC）．
If NC is chosen and power is turned on，relay becomes ON about 1.8 seconds and becomes OFF at event power range． Event3 is exclusive selection option of control out put 2 and DI4． Item and contents are same with event 1 and 2.
：Set of 3 In MAC 3D，exclusive selection option with CT input 5 V DC 0.5 mA Refer to following table．
\begin{tabular}{|c|c|c|c|}
\hline DI character & Operation type & Input detection & Contents \\
\hline man & No allotment & & \\
\hline 5ロコ & 2nd SV & level & With closed DI terminal Execution SV＝2nd SV \\
\hline 53 & 3rd SV & level & With closed DI terminal Execution SV \(=3\) rd SV \\
\hline Sロー & 4th SV & level & With closed DI terminal Execution SV \(=4\) th SV \\
\hline \(\cdots\) & control RUN & level & RUN with closed DI terminal，STBY with open one． \\
\hline Proi & program & level & \begin{tabular}{l}
Program with closed DI terminal． \\
Constant value with opened．
\end{tabular} \\
\hline ニアッ & manual inpu t & level & Manual with closed DI terminal，auto with open one． \\
\hline Bit & auto tuning & edge & AT－start with rise edge． \\
\hline Hoig & hold & level & Program＇s time stops temporarily． \\
\hline S以ー9 & skip & edge & Shift to the next program＇s step． \\
\hline \(P L_{\text {＿}}\) ； & Pattern 1 & level & Choose pattern 1 with close DI rerminal \\
\hline \(P!\)－ & Pattern 2 & level & Choose pattern 2 with close DI rerminal \\
\hline \(P!3\) & Pattern 3 & level & Choose pattern 3 with close DI rerminal \\
\hline \(P!4\) & Pattern 4 & level & Choose pattern 4 with close DI rerminal \\
\hline L＿－ 5 & latching release & edge & All latching are released by rise edg． \\
\hline 10\％ & super key lock & level & \begin{tabular}{l}
Super keylock with closed DI terminal． \\
Release with opened．
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Input minimum retention time : 0.25 second} \\
\hline Input of operation & Non-voltage contact or open collector \\
\hline DI4 (option) & : DI4 is exclusive selection option with control output 2, Event3 \\
\hline \multirow[t]{2}{*}{Number of input} & : One \\
\hline & : Item and contents are same with DI 1, DI 2 and DI 3. \\
\hline \multirow[t]{2}{*}{Communication function(option)} & : Output and an exclusive selection option for MAC 3D. \\
\hline & Read attached communication instructions manual that detailed about communication function. \\
\hline Communicative type & : EIA standard RS-485 \\
\hline Communication system & : Two-wire system half duplex multi-drops (bus) system \\
\hline Synchro system & : Asynchronous system \\
\hline Communication distance & : Maximum 500m (dependson conditions) \\
\hline Communication Speed & : 1200, 2400, 4800, 9600, 19200 or 38400bps \\
\hline Data format & : Start 1bit, Stop 12 bits, Data length 7 or 8 bits, Parity without, odd number, even number \\
\hline \multirow[t]{4}{*}{Master function} & Chooses from SV, OUT1, OUT2 (1:n number of slaves maximum 31) \\
\hline & ※ When MAC3 is a master, slave address range must be continuation. \\
\hline & ※ When MAC3 is a master, bus connection with other host PCs is not allowed. \\
\hline & ※ Input range of master machine and slave machine should be equal,at the time of cascade control \\
\hline Slave address & : 1-255 \\
\hline \multicolumn{2}{|l|}{Parameter preservation mode: Choose from RAM, MIX and EEP mode.} \\
\hline \multicolumn{2}{|l|}{Error detection : None, Choose from ADD, complement of ADD +2, exclusive OR, CRC-16 and LRC} \\
\hline Flow control & : none \\
\hline Delay & : 1 - 500 ms (resolution 1 ms ) \\
\hline Communication code & ASCII code or binary code \\
\hline Protocol & : SHIMAX Standard or MODBUS ACII, MODBUS RTU protocol \\
\hline Termination resistance & : \(120 \Omega\) (external connection) \\
\hline Number of connection & : Maximum 32 sets (depends on conditions, host is included) \\
\hline Analog output(AO) & : In MAC 3D, exclusive selection option with communication function \\
\hline Output kind & : Choose from PV, SV, OUT1, OUT2, CT1, and CT2. \\
\hline \multirow[t]{2}{*}{Output rating} & \(4-20 \mathrm{~mA}\) DC \(300 \Omega\) or less, Display accuracy \(\pm 0.3 \%\) (accuracy maintenance range \(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\) ) \\
\hline & Load regulation \(\pm 0.05 \%\), Resolution approx \(1 / 50,000\) \\
\hline Scaling function & : with (range depends on output type) analog output lower limit value < analog output upper limit value \\
\hline Output limiter & : \(0.0-100.0 \%\) (reverse setting is possible) \\
\hline CT1. CT2 input & : In MAC 3D, exclusive selection option with DI•D2-D3 \\
\hline Detection method & : Current judging system by CT sensor \\
\hline Detection range & : \(0.0-55.0 \mathrm{~A}\) \\
\hline Sampling period & : 125 ms \\
\hline Detection accuracy & \(\pm 5 \%\) FS \\
\hline Detection delay time & : \(0.5-30.0\) seconds \\
\hline Alarm output & : Assigned to event \\
\hline Detection Objects & : Assigned to OUT1, OUT2, EV1, EV2, and EV3. \\
\hline \multicolumn{2}{|l|}{Alarm operating point} \\
\hline setting range & : \(0.0-50.0 \mathrm{~A}\) \\
\hline Recommended CT sensors & rs : Products of U_RD co., CTL-6-L , CTL-6-V, CTL-6-P-H, CTL-6-S-H, CTL-12L-8 \\
\hline
\end{tabular}

General specification
Data save
Temporary dead time
Humidity : Below \(90 \%\) RH (no dew condensation)

Hight : Altitude of 2000 m or less
Category : II
Contamination degree : 2
Storage temperature Conditions : \(-20 \sim 65{ }^{\circ} \mathrm{C}\)
Supply voltage : \(90-264 \mathrm{~V}\) AC \(50 / 60 \mathrm{~Hz}\) or \(21.6-26.4 \mathrm{~V} \mathrm{AC}(50 / 60 \mathrm{~Hz}) / \mathrm{DC}\)
Power consumption \(\quad: 90-264 \mathrm{~V}\) AC maximum 9VA \(21.6-26.4 \mathrm{~V}\) AC maximum \(6 \mathrm{VA} \quad 21.6-26.4 \mathrm{~V}\) DC maximum 4W
Applicable standard Safety : IEC1010-1 and EN61010-1:2001
EMC : EN61326-1:1997+Amendment1:1998+Amendment2:2001
(EMI: ClassA, EMS: AnnexA)
EN61000-3-2:2000 EN61000-3-3:1995+Amendment 1:2001
\begin{tabular}{ll}
\multicolumn{1}{c}{ Oscillation } & \(:\) IEC60068-2-6/1995 \\
Insulated class & : Class I apparatus \\
Input noise removal ratio & : Normal 50 dB or higher \\
Impulse-proof noise & : Power-source Normal \(100 \mathrm{~ns} / 1 \mu \mathrm{~s} \pm 1500 \mathrm{~V}\) \\
& \\
Insulation resistance & : Between input/output terminal and power supply terminal \(\quad 500 \mathrm{~V} \quad \mathrm{DC} \quad 20 \Omega\) or higher \\
& : Between analog output or communication and other input/output terminals \(500 \mathrm{~V} \quad \mathrm{DC} \quad 20 \Omega\) or higher \\
Withstand voltage & : Between input/output terminal and power supply terminal 1500 VAC 1 minute or 1800 VAC 1 second
\end{tabular}

\section*{Resistance to vibration}

\section*{Case material}

Case color
Outside dimension MAC3 A
MAC3 B MAC3C MAC3 D
Thickness of applied panel Size of attachment hole MAC3A мАСЗ MAC3C MAC3D Weight

Between analog output or communication and other input/output terminals 500 V AC 1 minute or 600 V AC 1 second
Frequency \(10 \sim 55 \sim 10 \mathrm{~Hz}\), amplitude 0.75 mm (one side amplitude ) \(\cdots 100 \mathrm{~m} / \mathrm{S}^{2}\) Direction 3 directions
Sweep speed 1 octave/minute (about 5 minutes for both-way/cycle) Number of sweep 10 times
PPO or PPE
Light gray (Mansel value 3.73B7.77/0.25)
\(\mathrm{H} 96 \times\) W96 \(\times\) D 69 mm (depth in panel 65 mm )
\(\mathrm{H} 96 \times\) W48 \(\times\) D 66 mm (depth in panel 62 mm )
\(\mathrm{H} 72 \times\) W \(72 \times\) D 62 mm (depth in panel 62 mm )
\(\mathrm{H} 48 \times\) W48 \(\times\) D66mm (depth in panel 62 mm )
\(1.2-2.8 \mathrm{~mm}\)
H92 \(\times\) W92mm Attachment hole size of horizontal plural proximity attach
\(\mathrm{W}(96 \times \mathrm{N}-4) \mathrm{mm}\)
H 92 mm
H92 \(\times\) W45mm N=number of equipment \(\quad \mathrm{W}(48 \times \mathrm{N}-3) \mathrm{mm} \quad \mathrm{H} 92 \mathrm{~mm}\)
- \(\mathrm{H} 68 \times \mathrm{W} 68 \mathrm{~mm} \quad \mathrm{~W}(72 \times \mathrm{N}-4) \mathrm{mm} \quad \mathrm{H} 68 \mathrm{~mm}\)
\(\mathrm{H} 45 \times \mathrm{W} 45 \mathrm{~mm} \quad \mathrm{~W}(48 \times \mathrm{N}-3) \mathrm{mm} \mathrm{H} 45 \mathrm{~mm}\)

MAC3A : About 220g
MAC3B : About 160g
MAC3C : About 160g
MAC3D : About 120g

Except for input, system and contact, all control output are no-isolation Between event output EV1 and EV2 1 is not insulated

Others are basic insulation or functional insulation.
Refer to the following insulation block chart. nsulation block chart

Basic I nsulation —— Functional insulation —— Not insulated ....................
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Power supply} \\
\hline \multirow{3}{*}{Measurement input (PV)} & \multirow{9}{*}{System} & Control output 1 (contact) \\
\hline & & Control output 1 (a voltage pulse / current) \\
\hline & & Control output 2 (contact) \\
\hline External control input 1 (DII) & & Control output 2 (voltage pulse / current) \\
\hline External control input 2 (D12) & & Event output 1 (EV1) \\
\hline External control input 3 (DI3) & & Event output 2 (EV2) \\
\hline External control input 4 (DI4) & & Event output 3 (EV3) \\
\hline Current transformer 1 (CT1) & & Analog output (AO) \\
\hline Current transformer 2 (CT2) & & Communication \\
\hline
\end{tabular}


The contents of this instruction are subject to change without notice.

Head Office: 11-5 Fujimicho, Daisen-shi, Akita 014-0011 Japan
Tokyo Branch: 3-44-1-208 Hayamiya, Nerima-ku, Tokyo 179-0085 Japan```

